Системи лінійних диференціальних рівнянь. Загальні положення
Система диференціальних рівнянь, що записана у вигляді

називається лінійною неоднорідною системою диференціальних рівнянь. Система

називається лінійною однорідною системою диференціальних рівнянь. Якщо ввести векторні позначення

, , ,

то лінійну неоднорідну систему можна переписати у вигляді

а лінійну однорідну систему у вигляді

.

Якщо функції неперервні в околі точки , то виконані умови теореми існування та єдиності розв'язку задачі Коші, і існує єдиний розв'язок

системи рівнянь, що задовольняє початковим даним

1. Властивості розв'язків лінійних однорідних систем
Властивість 1. Якщо вектор є розв'язком лінійної однорідної системи, то і , де - стала скалярна величина, також є розв'язком цієї системи.

Дійсно, за умовою

.

Але тоді і

оскільки дорівнює нулю вираз в дужках. Тобто є розв'язком однорідної системи.

Властивість 2. Якщо дві векторні функції , є розв'язками однорідної системи, то і їхня сума також буде розв'язком однорідної системи.

Дійсно, за умовою

і

Але тоді і

тому що дорівнюють нулю вираз в дужках, тобто є розв'язком однорідної системи.

Властивість 3. Якщо вектори , … , є розв'язками однорідної системи, та і їхня лінійна комбінація з довільними коефіцієнтами також буде розв'язком однорідної системи.

Дійсно, за умовою

.

Але тоді і

тому що дорівнює нулю кожний з доданків, тобто є розв'язком однорідної системи.

Властивість 4. Якщо комплексний вектор з дійсними елементами є розв'язком однорідної системи, то окремо дійсна та уявна частини є розв'язками системи.

Дійсно за умовою

Розкривши дужки і зробивши перетворення, одержимо

А комплексний вираз дорівнює нулю тоді і тільки тоді, коли дорівнюють нулю дійсна і уявна частини, тобто

що і було потрібно довести.

Визначення 1. Вектори , , … , називаються лінійно залежними на відрізку , якщо існують не всі рівні нулю сталі , такі, що при .

Якщо тотожність справедлива лише при , то вектори лінійно незалежні.

Визначення 2. Визначник, що складається з векторів

, тобто

називається визначником Вронського.

Теорема 1. Якщо векторні функції лінійно залежні, то визначник Вронського тотожно дорівнює нулю.

Доведення. За умовою існують не всі рівні нулю , такі, що при .

Або, розписавши покоординатно, одержимо

.

А однорідна система має ненульовий розв'язок тоді і тільки тоді, коли визначник дорівнює нулю, тобто

.

Теорема 2. Якщо розв'язки - лінійної однорідної системи лінійно незалежні, то визначник Вронського не дорівнює нулю в жодній точці .

Доведення. Нехай, від супротивного, існує точка і .

Тоді система однорідних алгебраїчних рівнянь

має ненульовий розв'язок . Розглянемо лінійну комбінацію розв'язків з отриманими коефіцієнтами

.

Відповідно до властивості 4, ця комбінація буде розв'язком. Крім того, як випливає із системи алгебраїчних рівнянь, для отриманих : , . Але розв'язком, що задовольняють таким умовам, є . І в силу теореми існування та єдиності ці два розв'язки збігаються, тобто при , або

,

або розв'язки лінійно залежні, що суперечить умові теореми.

Таким чином, у жодній точці , що і було потрібно довести.

Теорема 3. Для того щоб розв'язки були лінійно незалежні, необхідно і достатно, щоб у жодній точці .

Доведення. Випливає з попередніх двох теорем.

Теорема 4. Загальний розв'язок лінійної однорідної системи представляється у вигляді лінійної комбінації п -лінійно незалежних розв'язків.

Доведення. Як випливає з властивості 3, лінійна комбінація розв'язків також буде розв'язком. Покажемо, що цей розв'язок загальний, тобто завдяки вибору коефіцієнтів можна розв'язати будь-яку задачу Коші або в координатній формі:

.

Оскільки розв'язки лінійно незалежні, то визначник Вронського відмінний від нуля. Отже, система алгебраїчних рівнянь

має єдиний розв'язок .

Тоді лінійна комбінація

є розв'язком поставленої задачі Коші. Теорема доведена.

Властивість 1. Максимальне число незалежних розв'язків дорівнює кількості рівнянь.

Це випливає з теореми про загальний розв'язок системи однорідних рівнянь, тому що будь-який інший розв'язок може бути представлений у вигляді лінійної комбінації лінійно незалежних розв'язків.

Визначення. Матриця, складена з будь-яких -лінійно незалежних розв'язків, називається фундаментальною матрицею розв'язків системи.

Якщо лінійно незалежними розв'язками будуть

, , … , ,

то матриця

буде фундаментальною матрицею розв'язків.

Як випливає з попередньої теореми загальний розв'язок може бути представлений у вигляді

,

де - довільні сталі. Якщо ввести вектор , то загальний розв'язок можна записати у вигляді .

2. Формула Якобі
Нехай - лінійно незалежні розв'язки однорідної системи, - визначник Вронського. Обчислимо похідну визначника Вронського

Оскільки для похідних виконується співвідношення

………………………………………….

то після підстановки одержимо



Розкривши кожний з визначників, і з огляду на те, що визначники з однаковими стовпцями дорівнюють нулю, одержимо

.

Або

.

Розділивши змінні, одержимо

.

Проінтегруємо в межах ,

,

або

.

Взагалі кажучи, доведення проводилося в припущенні, що система рівнянь може залежати від часу, тобто

.

Отримана формула називається формулою Якобі.
Случайные рефераты:
Реферати - Дмитро Чуб (Дмитро Нитченко)
Реферати - Літературний портрет Степана Пушика
Реферати - Життєвий і творчий шлях Ігоря Римарука
Реферати - Життя і творчість Григорія Чупринка
Реферати - Грабовський
Реферати - Життя та творчість Володимира Винниченка
Реферати
  • Всі реферати
  • Архітектура
  • Астрономія, авіація
  • Аудит
  • Банківська справа
  • Безпека життєдіяльності
  • Біографія, автобіографія
  • Біологія
  • Бухгалтерський облік
  • Військова кафедра
  • Географія
  • Геологія
  • Гроші і кредит
  • Державне регулювання
  • Діловодство
  • Екологія
  • Економіка підприємства
  • Економічна теорія
  • Журналістика
  • Іноземні мови
  • Інформатика, програмування
  • Історія всесвітня
  • Історія України
  • Історія економічних вчень
  • Краєзнавство
  • Кулінарія
  • Культура
  • Література
  • Макроекономіка
  • Маркетинг
  • Математика
  • Медицина та здоров'я
  • Менеджмент
  • Міжнародні відносини
  • Мікроекономіка
  • Мовознавство
  • Педагогіка
  • Підприємництво
  • Політологія
  • Право
  • Релігієзнавство
  • Промисловість
  • Сільське господарство
  • Сочинения на русском
  • Соціологія
  • Литература на русском
  • Страхування
  • Твори
  • Фізика
  • Фізична культура
  • Філософія
  • Фінанси
  • Хімія
  • Цінні папери
  • Логіка
  • Туризм
  • Психологія