Числові та степеневі ряди
ПЛАН

1.Числові ряди.

2.Степеневі ряди.

1. Числові ряди

У деяких задачах розглядають суми, що складаються із нескінченної кількості доданків. Властивості таких нескінченних сум часто суттєво відрізняються від властивостей сум скінченної кількості доданків.

Наприклад, для суми S=1-1+1-1+1-1+… згідно з асоціативним законом маємо S=(1-1)+(1-1)+… та S=1-(1-1)-(1-1)-… . Отже, для нескінченних сум асоціативний (сполучний) закон додавання не виконується.

Означення. Нехай задано нескінчену послідовність {an}=a1,a2,…,an,….

Тодівиразa1+a2+…+an+…=
називають числовим рядом, а доданок an - загальним членом цього ряду.

Розглянемо часткові суми числового ряду:

S1=a1 ;

S2=a1+a2 ;

…………..

Sn=a1+a2+…+an ;

…………….

Означення. Ряд називається збіжним, якщо послідовність його часткових (частинних) сум має скінченну границю. Ця границя називається сумою ряду

(9.1)

Приклади.

1. Ряд є збіжним. Його сума дорівнює 1, оскільки згідно з формулою суми геометричної прогресії .

2. Ряд є розбіжним, оскільки можна довести, що для будь-якого числа A знайдеться такий номер N, що .

3. Нехай у деякій закритій економіці частка національного продукту, яку витрачають на споживання, становить b, а частка, яку вкладають в інвестування 1-b . Нехай початкові інвестиції дорівнюють I. Тоді згідно з теорією Кейнса споживання спричинить нові інвестиції у розмірі b×I . На наступному етапі матимемо інвестиції в розмірі b2×I і так далі. В перспективі національний доход становитиме Y=I+bI+b2I+…= . Коефіцієнт називають мультиплікатором.

Властивості збіжних рядів

Теорема1 (необхідна умова збіжності рядів). Якщо ряд збігається, то його загальний член прямує до нуля ( ).

Теорема 2. Якщо ряд збігається, то для будь-якого значення m³2 збігається ряд і навпаки.

Крім того, збіжні ряди можна почленно додавати та множити на число.

Достатні ознаки збіжності рядів

Теорема 3. Нехай задано два ряди з додатними членами (знакододатні, знакосталі ряди) та . Нехай для всіх значень індексу i виконується ai³bi . Тоді із збіжності ряду випливає збіжність ряду .

Теорема 4 (ознака Д'Аламбера). Нехай для ряду з додатними членами існує границя .Тоді при l<1 ряд збігається, а при l>1 розбігається.

Приклад. Дослідити на збіжність ряд

Знаходимо границю

. Ряд збігається.

Теорема 5 (ознака Лейбніца). Нехай задано знакозмінний ряд (кожні два сусідні члени ряду мають інший знак). Тоді якщо , то ряд є збіжним.

Приклад. Ряд збігається, бо .

Для обчислення цього ряду, наприклад, з точністю до 0.01 потрібно, щоб , тобто , звідки . Отже, потрібно взяти 100 членів ряду.

Абсолютна збіжність рядів

Означення. Ряд називається абсолютно збіжним, якщо збігається ряд , та умовно збіжним, якщо збігається ряд , а ряд розбігається.

Приклади.

1. Ряд є умовно збіжним, оскільки ряд розбігається.

2. Ряд є абсолютно збіжним.

2. Степеневі ряди

Означення. Степеневим рядом називається ряд вигляду

c0+c1x+c2x2+…+cnxn+…

Приклади.

1. Степеневий ряд 1+x+x2+…+xn+… Тут усі cn=1.

2. Степеневий ряд 1-2x+3x2-4x3+5x4-… Тут cn =(-1)n×(n+1).

Очевидно, що за одних значень змінної x ряд може збігатися, а за інших – розбігатися. Тому ставлять задачу звідшукання радіуса збіжності степеневого ряду (тобто такого додатного числа R, що для всіх значень |x|
Приклад.

1. Знайти область збіжності степеневого ряду



Згідно з ознакою Д'Аламбера .

Очевидно, що при –22 та x<-2 цей ряд розбігається. Випадки x=2 та x=-2 потрібно досліджувати окремо.

Теорема (без доведення). Степеневий ряд в області його збіжності можна почленно диференціювати та інтегрувати.

Одним із найважливіших результатів математичного аналізу є розклад функцій у ряди.

Теорема. Нехай у деякому околі точки x0 функція f(x) є (n+1) разів диференційовною. Тоді в цьому околі функція f(x) розкладається в такий ряд

, (9.2)
де точка x належить околу точки x0 .

Цю формулу називають формулою Тейлора. Очевидно, що коли (n+1)–а похідна f(n+1)(x) обмежена, то залишковий член ряду прямує до нуля при x®x0. Отже,

.

При x0=0 формула Тейлора перетворюється у формулу Маклорена

(9.3)

Легко бачити, що формула Маклорена є степеневим рядом. Таким чином елементарні (шкільні) функції, всі які є багато разів диференційовними, можна розкладасти в степеневі ряди.

Приклади.

1. Розкласти в степеневий ряд функцію f(x)=ex.

Маємо f(x)=f¢(x) =f²(x) =…=f(n)(x) =…=ex. Далі f(0)=f¢(0)=f²(0)=…

…=f(n)(0) =…=e0=1. Отже,



2.

Згідно з ознакою Лейбніца ( ) ряд збігається при будь-якому значенні x.

2. Оскільки (sinx)¢=cosx, (sinx)²=-sinx, (sinx)²¢=-cosx, (sinx)IV=sinx, то

…=



4. Оскільки

і далі ln¢1 = 1, ln²1=-1!, ln²¢1=2!,

то

Радіус збіжності визначаємо відповідно до ознаки Д'Аламбера:

, звідки умова |x|<1. Отже, R=1.

Формула Тейлора справджується і для функцій від багатьох змінних. Зокрема, для функції від двох змінних f(x,y) в околі точки (0;0):

(9.4)
Случайные рефераты:
Реферати - Пантелеймон Куліш - життєвий та творчий шлях
Реферати - Іван Федорович Драч – життя та творчість
Реферати - Життя та творчість Остапа Вишні
Реферати - Образи поеми Т.Шевченка "Гайдамаки"
Реферати - Поетеса Леся Храплива
Реферати - Питання і тести з української літератури
Реферати
  • Всі реферати
  • Архітектура
  • Астрономія, авіація
  • Аудит
  • Банківська справа
  • Безпека життєдіяльності
  • Біографія, автобіографія
  • Біологія
  • Бухгалтерський облік
  • Військова кафедра
  • Географія
  • Геологія
  • Гроші і кредит
  • Державне регулювання
  • Діловодство
  • Екологія
  • Економіка підприємства
  • Економічна теорія
  • Журналістика
  • Іноземні мови
  • Інформатика, програмування
  • Історія всесвітня
  • Історія України
  • Історія економічних вчень
  • Краєзнавство
  • Кулінарія
  • Культура
  • Література
  • Макроекономіка
  • Маркетинг
  • Математика
  • Медицина та здоров'я
  • Менеджмент
  • Міжнародні відносини
  • Мікроекономіка
  • Мовознавство
  • Педагогіка
  • Підприємництво
  • Політологія
  • Право
  • Релігієзнавство
  • Промисловість
  • Сільське господарство
  • Сочинения на русском
  • Соціологія
  • Литература на русском
  • Страхування
  • Твори
  • Фізика
  • Фізична культура
  • Філософія
  • Фінанси
  • Хімія
  • Цінні папери
  • Логіка
  • Туризм
  • Психологія