Числення та алгебра висловлень
Довільну формулу F числення висловлень можна змістовно інтерпретувати як складене висловлення, істинність або хибність якого залежить від істинності елементарних висловлень, що до нього входять. Таким чином, кожній формулі F числення висловлень можна аналогічно тому, як це було зроблено в алгебрі висловлень, поставити у відповідність функцію істинності f.

Виникає питання, як пов’язано таке змістовне "істиннісне" тлумачення (інтерпретація) формул числення висловлень з їхньою формальною вивідністю.

Теорема 5.5. Будь-яка теорема числення висловлень ЧВ є тотожно істинним висловленням (тавтологією).

Доведення. Тотожна істинність усіх аксіом легко перевіряється безпосередньо побудовою відповідних таблиць істинності для кожної з них (рекомендуємо це зробити самостійно).

Відтак, доведемо, що обидва правила виведення числення висловлень перетворюють тотожно істинні формули у тотожно істинні.

Якщо A (p1, p2,..., pn) - тотожно істинна формула, то для довільного набору значень a1, a2,..., an її пропозиційних змінних A (a1, a2,..., an) є істинною. Отже, тотожно істинною буде і будь-яка формула A, що отримується з формули A шляхом підстановки замість пропозиційних змінних p1, p2,..., pn довільних формул B1, B2,....., Bn, оскільки останні можуть набувати лише значень 0 або 1.

Доведемо, що коли формули A і A®B є тотожно істинними, тоді формула B, яку ми дістаємо з них за правилом висновку, також є тотожно істинною. Припустімо супротивне: нехай B не є тотожно істинною формулою, тобто існує набір значень її змінних, на якому вона набуває значення 0. Тоді підставимо цей набір у формулу A®B, оскільки A є тавтологією, то дістанемо вираз 1®0, значенням якого є 0. Останнє суперечить припущенню про тотожну істинність формули A®B.

Таким чином, ми переконалися в тому, що всі аксіоми числення висловлень ЧВ є тотожно істинними формулами алгебри висловлень, а застосування обох правил виведення (підстановки і висновку) до тотожно істинних формул знову приводить до тотожно істинних формул. Отже, всі вивідні формули (теореми) числення висловлень є тотожно істинними формулами алгебри висловлень.

Справедливою є й обернена теорема, яку подамо без доведення.

Теорема 5.6. Будь-яка тотожно істинна формула алгебри висловлень є теоремою числення висловлень ЧВ.

Дві останні теореми дозволяють вирішити три важливі проблеми числення висловлень: проблему несуперечності, проблему повноти і проблему розв’язності. Розглянемо їх послідовно.

1. Проблема несуперечності.

Для кожної формальної теорії кардинальним є питання несуперечності. Справді, така теорія будується послідовним приєднанням нових теорем, які формально виводять з аксіом за допомогою правил виведення. Отже, немає жодної гарантії, що в цьому процесі ми не дійдемо до суперечності. Інакше кажучи, виникає питання, чи при поступовому нагромадженні теорем формальної теорії (числення) не трапиться так, що одна з теорем суперечитиме іншим. Саме так виникає проблема несуперечності числення.

Числення є несуперечним, якщо неможливо одночасно вивести з аксіом числення як формулу A, так і її заперечення ØA.

Наслідок 5.1. Числення висловлень ЧВ є несуперечною формальною теорією.

Справді, якщо формула A вивідна у численні висловлень, то формула ØA не може бути вивідною, бо за теоремою 5.5 формула A є тотожно істинною в алгебрі висловлень, а формула ØA - тотожно хибною. Отже, ØA не може бути теоремою числення висловлень ЧВ.

2. Проблема повноти

Інша проблема, що виникає при дослідженні різних числень висловлень: чи будь-яка тотожно істинна формула алгебри висловлень буде вивідною в заданому численні? Це питання й являє собою проблему повноти для числення висловлень.

Смисл такої постановки питання полягає в тому, що при побудові числення потрібно знати, чи достатньо аксіом і правил виведення даного числення для того, щоб можна було вивести будь-яку формулу, яка в змістовному розумінні є тотожно істинною.

Наслідок 5.2. Числення висловлень ЧВ є повним.

Справедливість цього твердження безпосередньо випливає з теореми 5.6.

У математичній логіці існує й інше поняття повноти системи аксіом (або числення), що ґрунтується на неможливості доповнення системи аксіом будь-якою формулою, яку не можна вивести з даних аксіом.

3. Проблема розв’язності

Розв’язувальним методом для формальної теорії T називають метод, за допомогою якого для довільної формули A з T можна за скінченне число кроків визначити, чи буде A теоремою, чи ні.

Числення T називають розв’язним, якщо для T існує розв’язувальний метод, у противному разі - формальна теорія T є нерозв’язаною.

Наслідок 5.3. Числення висловлень ЧВ є розв’язною теорією.

Доведення. Нехай A - довільна формула числення ЧВ. Побудуємо для неї таблицю істинності і розглянемо її останній стовпчик. Якщо він містить лише одиниці, то A - тотожно істинна формула і за теоремою 5.6 є теоремою ЧВ. У противному разі (останній стовпчик таблиці істинності містить хоча б один нуль), A - не тавтологія і значить, A не є теоремою.

Зрозуміло, що всі ці дії можна зробити за скінченне число кроків.

Нарешті, розглянемо ще одну важливу проблему для формальних теорій.

Система аксіом числення називається незалежною, якщо жодна з аксіом цієї системи не може бути виведена з інших аксіом системи.

Зрозуміло, що аксіому, яку можна вивести з інших, можна виключити зі системи аксіом, і при цьому множина теорем теорії залишиться тією ж самою (тобто отримаємо рівносильне числення). Отже, залежна система аксіом у певному розумінні менш досконала, ніж незалежна система, бо вона містить зайві аксіоми.

Можна довести, що системи аксіом числень висловлень ЧВ і ЧВ1 є незалежними.

Існують й інші формальні теорії, що означаються і досліджуються у математичній логіці: числення предикатів, різноманітні числення (теорії) першого порядку, числення з рівностями, формальна арифметика тощо. У наступних розділах розглянемо основні ідеї і принципи побудови однієї з таких теорій - числення предикатів.
Случайные рефераты:
Реферати - Порівняння української і світової літератури періоду Великої Вітчизняної Війни
Реферати - Василь Стус. Життя і творчість
Реферати - Могутній і рідкісний талант Остапа Вишні
Реферати - Життя і творчість Є. П. Гребінки
Реферати - Життя Панаса Мирного
Реферати - Микола Лукаш – геніальний український перекладач
Реферати
  • Всі реферати
  • Архітектура
  • Астрономія, авіація
  • Аудит
  • Банківська справа
  • Безпека життєдіяльності
  • Біографія, автобіографія
  • Біологія
  • Бухгалтерський облік
  • Військова кафедра
  • Географія
  • Геологія
  • Гроші і кредит
  • Державне регулювання
  • Діловодство
  • Екологія
  • Економіка підприємства
  • Економічна теорія
  • Журналістика
  • Іноземні мови
  • Інформатика, програмування
  • Історія всесвітня
  • Історія України
  • Історія економічних вчень
  • Краєзнавство
  • Кулінарія
  • Культура
  • Література
  • Макроекономіка
  • Маркетинг
  • Математика
  • Медицина та здоров'я
  • Менеджмент
  • Міжнародні відносини
  • Мікроекономіка
  • Мовознавство
  • Педагогіка
  • Підприємництво
  • Політологія
  • Право
  • Релігієзнавство
  • Промисловість
  • Сільське господарство
  • Сочинения на русском
  • Соціологія
  • Литература на русском
  • Страхування
  • Твори
  • Фізика
  • Фізична культура
  • Філософія
  • Фінанси
  • Хімія
  • Цінні папери
  • Логіка
  • Туризм
  • Психологія